函数周期性怎么推的
函数周期性公式及推导:f(x+a)=-f(x)周期为2a。证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。f(x+a)=-f(x)
那么f(x+2a)=f[(x+a)+a]=-f(x+a)=-[-f(x)]=f(x)
所以f(x)是以2a为周期的周期函数。
f(x+a)=1/f(x)
那么f(x+2a)=f[(x+a)+a]=1/f(x+a)=1/[1/f(x)]=f(x)
所以f(x)是以2a为周期的周期函数。
f(x+a)=-1/f(x)
那么f(x+2a)=f[(x+a)+a]=-1/f(x+a)=1/[-1/f(x)]=f(x)
所以f(x)是以2a为周期的周期函数。
所以得到这三个结论。
上一篇:教师资格证认证入口官网
下一篇:tie是什么意思