洛必达法则是什么意思
洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法 。众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。洛必达法则便是应用于这类极限计算的通用方法。
在运用洛必达法则之前,首先要完成两项任务
一是分子分母的极限是否都等于零(或者无穷大);
二是分子分母在限定的区域内是否分别可导。如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。
注意事项
求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。洛比达法则用于求分子分母同趋于零的分式极限。
⑴ 在着手求极限以前,首先要检查是否满足或型构型,否则滥用洛必达法则会出错(其实形式分子并不需要为无穷大,只需分母为无穷大即可)。当不存在时(不包括情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。
⑵ 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
洛必达法则3大陷阱—
1.要求右侧极限存在
洛必达使用逻辑是有点诡异的,右侧极限存在,回推原极限存在,注意这里的存在包括无穷。那么不存在的情况,我们目前接触的应该是震荡的情况,需要找其他方法,通常比洛必达还要简单。
2.时刻检查是否满足0/0或无穷/无穷
通常用洛必达法则,第一步大家使用的时候,应该都会check是否满足条件,但是多次使用洛必达的时候一定注意别忘了检查。
3.求导后函数要简化
有些函数求导后会更加复杂,或者我们在选取分子分母的时候要比较细心,如果发现很难算,一定记得回头,调换分子分母试—下或者另谋它法。