根号16等于多少
根号16的值是4。计算步骤:16^(1/2)=4。根号是用来表示对一个数或一个代数式进行开方运算的符号。在日常使用中,将2次开方运算直接读作根号某值。因此根号16即对16做2次开方。
根号16的平方根,一般地说,若一个非负数x的平方等于a,即x2=a,则这个数x叫做a的算术平方根。
求根号十六的算术平方根,就是求4的算术平方根,为2。
根号16的平方根是4的平方根为:±2。
根号简介
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用n√ ̄表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
由来
现代,我们都习以为常地使用根号(如√等),并感到它来既简洁又方便。
古时候,埃及人用记号“┌”表示平方根。印度人在开平方时,在被开方数的前面写上ka。阿拉伯人用 表示 。1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”表示立方根,比如,.3、..3、...3就分别表示3的平方根、4次方根、立方根。到十六世纪初,可能是书写快的缘故,小点上带了一条细长的尾巴,变成“ √ ̄”。1525年,路多尔夫在他的代数著作中,首先采用了根号,比如他写4是2,9是3,但是这种写法未得到普遍的认可与采纳。
与此同时,有人采用“根”字的拉丁文radix中第一个字母的大写R来表示开方运算,并且后面跟着拉丁文“平方”一字的第一个字母q,或“立方”的第一个字母c,来表示开的是多少次方。例如,中古有人写成R.q.4352。数学家邦别利(1526~1572年)的符号可以写成R.c.?7p.R.q.14╜,其中“?╜”相当于括号,P(plus)相当于用的加号(那时候,连加减号“+”“-”还没有通用)。
直到十七世纪,法国数学家笛卡尔(1596~1650年)第一个使用了现今用的根号“√ ̄”。在一本书中,笛卡尔写道:“如果想求n的平方根,就写作 ,如果想求n的立方根,则写作 。”
有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√ ̄(不过,它比路多尔夫的根号多了一个小钩)就为现时根号形式。
立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号 的使用,比如25的立方根用 表示。以后,诸如√ ̄等等形式的根号渐渐使用开来。
由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数学家们集体智慧的结晶,而不是某一个人凭空臆造出来的,也绝不是从天上掉下来的。
按住ALT,然后按顺序按41420(小键盘)就可以打出电脑中的根号“√”。