概率公式c怎么计算
概率公式c怎么计算
c (m,n)=p (m,n)/n概率
C表示组合数。c(m,n)=p(m,n)/n概率,又称或然率概率公式c怎么计算、机会率或几率。表示随机事件发生可能性大小的量,是事件本身所固有的不随人的主观意愿而改变的一种属性。可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生的可能性的度量。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
越接近1,该事件更可能发生;越接近0,则该事件更不可能发生,其是客观论证,而非主观验证。如某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这些都是概率的实例。
扩展
概率计算方法:频次算法
即分别考虑每种事件发生的频次,单个事件频次除总频次,即是概率值,或者单个事件频次除以其他事件频次,然后再转化为概率值。
例如:邮件箱中收到大量邮件,有诈骗邮件,有正常邮件。根据统计,诈骗邮件中出现文字:“中奖”占30%,出现“www.”占40%;正常邮件出现“中奖”占1%,出现“www.”占2%。数据统计显示邮箱中诈骗邮件占比为20%,随机抽取一封邮件发现含有“中奖”和“www.”,这封邮件是诈骗邮件的概率是多少。
想直接列出概率算式有点难度,通过频次计算就比较简单。
这封邮件要么是诈骗邮件,要么是正常邮件。
先考虑含有“中奖”和“www.”的正常邮件有多少:(1-20%) x 1% x 2% = 160 %%%
再考虑 含有“中奖”和“www.”的诈骗邮件有多少 20% x 30% x 40% = 240%%%
两者比值 160 :240 = 2:3
因为这封邮件不是正常邮件就是诈骗邮件,两者的概率之和是1,所以诈骗邮件的概率就是:
3 :(2+3)= 60%。
从这个例子中可以看出,用频次计算概率,就是分别考虑所有情况发生的频次,然后算出比值,然后再看总概率等于多少,若是互斥事件,总概率就是1,所以频次比就可以转化为概率值。这样用分别考虑各自的频次的方法就能降低思考难度。
再举个取球的例子,两个盒子,甲盒子装有70个白球30个红球,乙盒子装有20个白球80个红球。随意拿出一个盒子,取出一个球看颜色,再放回,连续取20次,发现10个白球10个红球。问拿出的盒子是甲的概率多少。
用频次算法极为简单,分别算频次。
甲盒子中拿出10个白球和10个红球的频次是 0.7^10 x 0.3^10
乙盒子同样算法 0.2^10 x 0.8^10
频次之比就是概率之比,因为是概率之和等于1,就很容易把频次比转化为概率。
在教科书中,针对 这类问题,发明条件概率概念和贝叶斯公式,甚至还用到阶乘的运算,这种做法并不能降低思考的难度,在我看来没有必要。