两向量垂直的充要条件是什么?
两向量垂直的充要条件为a·b=0。若a=(a1,a2)b=(b1,b2),垂直的充要条件为a1b1+a2b2=0。两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。
向量
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。
向量的大小
向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。
1、向量的模是非负实数,是可以比较大小的。向量a=(x,y),|a|=√(x^2+y^2)。
2、因为方向不能比较大小,所以向量不能比较大小。
在向量一章中,探求有关向量位置关系的等价条件是很重要的问题。教材中给出了向量垂直的向量形式和坐标表示,但有时用这两种表示形式做题不能起到简化运算作用,甚至带来麻烦。现给出向量垂直坐标表示的另外一种形式,并通过实例展现其解题的优势。
两非零向量a与b,并设a=(x1,y1),b=(x2,y2),则a与b垂直等价于a·b=0(向量形式),a与b垂直等价于x1x2+y1y2=0(坐标形式).结论2两非零向量a=(m,n)与b垂直的充要条件是存在非零实数λ,使b=λ(-n,m)
证明充分性
由a·b=(m,n)·λ(-n,m)=λ(-mn+nm)=0,得a⊥b
必要性
若a⊥b即a·b=0,设b=(x,y),即得mx+ny=0.由于a是非零向量,可设n≠0则y=-mnx,所以b=(x,y)=x,-mn()x=-xn(-n,m),我们可以取λ=-xn即可。
上一篇:经过一点可以画几条直线啊
下一篇:大年初四吃什么